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Asymptotic breathing pulse in optical transmission systems with dispersion compensation
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We study a nonlinear process of the formation of a breathing solitary wave in the optical transmission
systems with periodic amplification and dispersion compensation. Results of our numerical simulations dem-
onstrate remarkably stable asymptotic propagation of such breathing pulse over long distances. We have
derived approximate equations describing pulse amplitude and width oscillations and found that results ob-
tained by this approach are in good agreement with the results of direct numerical modeling on the short and
middle distances. It is shown that asymptotic averaged pulses have a form typically close to a Gaussian shape.
We have found numerically that an input pulse evolves asymptotically into a stable breathing structure. After
the first stage of propagation, the input pulse emits radiation that spreads due to dispersion. The asymptotic
structure that is formed realizes a balance between the main pulse and the radiative tail.
[S1063-651%97)10203-3

PACS numbefs): 03.40.Kf, 42.65.Tg, 42.81.Dp

I. INTRODUCTION remains approximately unchanged. On a large scale pulse
propagation in such communication systems is described by
One of the most important applications of the solitonthe well-established guiding-centéaveragg soliton theory
theory is fiber optical communications. In order to satisfy the[9,6,10. The problem of upgrading the existing optical links,
demands of future information transmission, which grows awhich are based on the standard telecommunication fiber,
an exponential rate, it is necessary to develop ultrafast optiarise due to higliapproximately 17 ps/nm kjrdispersion in
cal transmission lines whose data transmission rates shouttle 1.55xm window of optical transparency. The optical
eventually operate in a few hundred gigabits per second reemplifiers are usually placed at intervals of a few tens of
gime. The possibility of achieving such a goal was demonkilometers for conventional transmission systems. The
strated in recent experimerits—5]. Optical solitons are the higher capacity of the transmission system requires shorter
real candidates to play the role of the carriers of informatiorpulses. Therefore, the destructive influence of dispersion
in such systems. Nonlinear models governing optical solitortakes place at shorter distances. For multigigabit transmis-
transmission in fiber links are both of evident importance forsion at 1.55um the corresponding dispersion length in STFs
applications and of a fundamental physical interest. is approximately equal to the amplification distance in the
The problem of high-capacity system design falls into twoinstalled network$11,12 and guiding-center soliton theory
categories: long-haul transmission systems based on low disannot be applied.
persion fibergthe zero dispersion point lies in the 1.5%n The influence of chromatic dispersion can be significantly
window of optical transparengyand upgrading the existing reduced and the transmission capacity can be significantly
fiber links based on standard telecommunication fibergnhanced by means of the dispersion compensation tech-
(STF9. Recent progress in the fabrication of the erbium-nique. The simplest optical-pulse equalizing system consists
doped fiber optical amplifiers operating at 1,651 and low  of a transmission fiber and a compensating fiber with the
dispersion fibers has already demonstrated the effectiveneepposite dispersiofil4]. The incorporation of a piece of fi-
of long-distance soliton-based optical communication sysber with high normal dispersion reduces the total dispersion
tems(see, e.g2,6—8)). Lightwave transmission systems ex- of the fiber span between two amplifiers. Recent progress in
ploiting periodically distributed in-line optical amplifiers to the chirped fiber gratinfL 3] allows dispersion of 500 ps/nm
compensate for a carrier pulse attenuation in the fiber wilbr even more to be compensated by a grating fiber a few
soon be installed as transoceanic communication links. Thdecimeters in length. Presently the dispersion compensation
main feature of such a system is that amplifier spacing iss a simple and effective technique with many attractive fea-
considerably shorter than the characteristic dispersion lengtiures such as compatibility with the present concept of the
and therefore both the dispersion and nonlinearity can ball-optical transparency of the system, cascadability, and
treated as perturbations on the scale of the distance betwearailability of all system components. The effectiveness of
amplifiers. Only the fiber losses and periodic amplificationthis method was demonstrated in several experimgis
are significant factors in the leading order. These factord8] both for point-to-point and for cascaded transmission
cause the amplitude oscillations, while the form of the pulsesystems.
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The soliton transmission using dispersion compensation A@Z)
fibers (DCF9 has recently become the focus of intensive
researct{19-30. Large variations of the dispersion lead to \\ {\ K
the oscillations of a pulse width on the amplification dis- e T
tance. It was discovered [23] that the resulting asymptotic S T T
pulse is close to the Gaussian shape and has energy well
above that of the soliton of the average dispersion. Pulse /\/\ __________ /\
dynamics in the nonlinear Schtimger (NLS) equation with ~ -——- _— e —
the dispersion varying ad(z) =1+ e sink2 has been stud- D(z)
ied in[33,34] by means of the variational approach and nu- S
merically. It has been shown {134] that while a very broad - - N
soliton is stable in such a model, the splitting of the funda-
mental soliton takes place if the modulation length is of the
order of the dispersion length and the modulation amplitude ..... - D_ @ ...
exceeds a certain critical value. The dispersion-allocated |
soliton transmission line using dispersion-shifted nonsoliton e Fa '
fibers was suggested recently [i26]. In [28,21] the varia- ) . L
. . - Dispersion compensating fiber
tional approach was used for the analysis of a pulse dynam- @ Transmission fiber
ics in optical communication systems with dispersion com-
pensation. Modulation instability in the dispersion-managed > Optical amplifier

optical lines was studied if24—32. Numerical simulations FIG. 1. Schematic diagram of the dispersion compensation. Dis-
of the soliton transmission in short standard monomode fibegersion compensating fibers are followed by pieces of transmission

(SMF) systems upgraded by dispersion compensation havgsers. Dispersior(z) is normalized to the STF dispersion.
been performed if12]. It has been shown that 10-Gbit/s
transmission over 200 km is possible with a 36-km amplifierE=g(T,z) is normalized to the initial pulse power

spacing. A theory of the average pulse propagation in sysg|2=p,|A|?, and the coordinate along the fiteis normal-
tems using DCFs has been presented1]. It has been jzed to the nonlinear length=Z/Z,, . Chromatic dispersion
suggested to use breathing solitons for optical data transmig(7) is normalized here to the STF dispersion coefficient.
sion in STFs at 1.5um. _ We consider without loss of generality the following
In this paper we study numerically and by means of thegispersion-compensating scheme. A transmission line pre-
variational approach the asymptotic dynamics of the opticakents periodic alternating DCFs, transmission fiber sections,
pulse in the transmission systems using the dispersion commd in-line optical amplifiers as shown in Fig. 1. Each sec-
pensation technique. We have found that an asymptoticallyjon includes a dispersion-compensated fiber with normal
input signal evolves into the breathing soliton predicted indispersionD,, lengthZ.., and segments of transmission fi-
[19]. We derive an effective approximate model for pulseper with anomalous dispersidd., and lengthz=27,—Z..
evolution by assuming that nonlinear effects and residuatpe average (residua) dispersion of the section is
dispersion are responsible for “slow” average dynamics. D,e=[D_Z.+D.(Zs—Z.)]/Z,. To provide the average
soliton propagation the residual dispersdp,must be posi-
Il. BASIC EQUATIONS AND VARIATIONAL APPROACH tive [19,12,28. There are three characteristic dispersion
: . . . scales in the system under consideration: a dispersion length
The propagation of optical pulses in a transmission sys-

tem with periodic amplification and dispersion compensationZDCF’ corresponding to the chromatic dispersion of the DCF;

) \ : : a dispersion length of the transmission filZgy;; and a dis-
's governed by thedimensionlessNLS equation persion length that corresponds to the residual dispersion of

ZnL each sectiorZRD. An opticgl pul;e _propagating in guch a

iA,+ 22—@(2)&& |A|2A system experiences periodic oscillations of the amplitude and
dis width. A pulse evolution in the transmission line in the first

approximation can be described as a quasilinear process. In

the first stage, pulses acquire a positive dispersion-induced

=iZn _7+[exq7’za)_l]k§=:1 8(z=z) |A frequency chirp induced by a DCF. The pulse width in-
creases in this stage due to dispersive broadening. Entering a
=iG(2)A. (1) piece of a STF pulses compress because the sign of the dis-

persion is reversed and the condition for dispersion-induced
We use here the notation pf9]: Zy =1/0Py is the nonlin-  compression8,C<0 is satisfied(see, e.g.[35]). During
ear lengthZ=13/| B,| is the dispersion length correspond- propagation in fibers the amplitude of the pulse is reduced
ing to the STHthere are, as a matter of fact, three differentdue to fiber losses. Therefore, pulses must be regenerated at
dispersion lengths t; and P, are the incident pulse width the end of each section. In cascaded systems such a basic
and peak power3, is the group velocity dispersion for the section including a DCF, a STF, and an optical amplifier is
STF, o is the coefficient of the nonlinearity; describes fiber periodically repeated. When nonlinear effects and residual
lossesZ, is amplification period, and,=kz, are the ampli- dispersion are negligible the pulse recovers its original form.
fiers locations. Retarded time is normalized to the initialindeed, a phase shift of the pulse corresponding to the Kerr
pulse width t=T/ty, an envelope of the electric field effect over one cycle of this process is small; therefore,
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dispersion and fiber losses are the main acting factors. How- i

ever, these small changes are collected and at larger dis- S=J Ldtdzzf dtdZ{z(QQ?‘Q*Qz)
tances the Kerr nonlinearity may begin to come into play.

The influence of residual dispersion appears at a distance of NL , ¢(2), .,
Zrp>Z, and alters the shapes of pulses. The nonlinear +Tdisd(z)|Qt| _T|Q|
length Zy, can be comparable witdgy. Therefore, in the

description of a “slow” evolution of the pulse, it is neces- Here c(z)=exd2[;G(z')dZ] can be presented as a
sary to take into account both the residual dispersion andum of rapidly varying and constant part$z)={c(z))
nonlinearity. Thus rapid breathing oscillations of the pulse+¢c(z), where (¢(z))=0 and {c(z))=(exd2[;G(z')dZ])

are accompanied by slow average changes of the pulse char{1-exp(-2yz,)]/2yz,. We write alsod(z) in the similar
acteristics due to nonlinearity and residual disper$isj. form d(z)=(d(2))+d(z), where (d(z))=0 and (d)

In the limit Z,,Z4s<<Zy., One may treat the nonlinearity =[d_z.+d (z,—2z:)]/z, is a small perturbation due to an
as a perturbation. In the lowest order, fast oscillations of thewverage residual dispersioqd}~Zys/Zgp<1). Here we
linear pulse amplitude and width are given by use the notatior@f)=(1/za)féaf(z)dz.

Any solution of Eq.(1) corresponds to an extremum of
S. Therefore, to obtain an approximate model describing the
Iy (2 pulse evolution in Eq(1) one can specify some expected
szisfod(f)dg). general features of a solution in the trial function and obtain
2 a reduced variational problem after integrationt if36,37).
In recent paperg28,21] this approach has been applied to the
problem of optical pulse propagation in systems with disper-
Here A, does not depend onand is determined by initial SIon compensation. The accuracy of this method depends on
pulse form. For a Gaussian input sig&(0;t) = Nexp(—t?) the successful choice of a trial function and must be verified

linear oscillations are described by by direct numerical integration. _ _

Because nonlinearity and residual dispersion act as small
perturbations to the linear dynamics, we assume that an
asymptotic pulse structure will be close to the one given by

ext —t2/72(2)—iCt% 2(2) +id(2)] Eq. (3). Therefore, to describe both rapid pulse width oscil-
V7(2) ’ lations and slow dynamics due to nonlinearity and residual
(3)  dispersion let us choose a trial function in the form

Q(z,t)=a(2)f[t/b(z)]JexdiN(z)+iu(2)t?]. (5)

205 — 2 -
=1+ = ’
Wliere 7(2) 1_ 16R(2),dR(2)/d2=d(2) 2y, /(2Z4), Inserting the trial function given by Eq5) into Eq. (4), we
C=4R(2), and® = —0.5arctapdR(z)]. The form of linear : o .
. . ; ) . obtain the reduced variational problem with
solution described above gives hints to the explanation of the

Gaussian shape of the asymptotic soliton observe@ 3

Pulse chirping creates an effective parabolic potential that is (S>=f (L)dz, (6)
responsible for the formation of the Gaussian wings in both

the linear and nonlinear problems. Nonlinear effects come

into play on a large scale comparedZg, namely, on the (L):azbf |f(s)|2ds\,+ a2b3f $?|f(s)|?dsu,
distances proportional o, . Therefore, we use the solution

of the linear problem presented above as the starting point NL

for consideration of the nonlinear problem. Recall that the t57 —d(2)
guiding-center soliton concept introduced [i8,6] corre- dis

- 4

+ o
A(z,t)= J dewexr( i wt—iw?

A(z,t)=

azb‘lf |f|2%ds

sponds to the limiZ,<Zy ~Zg4s. We analyze in this work 23| 2 ) c(2) , 4

a regime withZy, >Z,~ Z4is[19]. The existence of the small +4ua’h® | s°f(s)[*ds|— ——a’b | [f(s)[ds.
parameters 4./ Zgp andZ,/Zy, allows us to introduce fast

and slow scales of the evolutidd9]. The fast process cor- @)

responds to the oscillations_ of the af.“p"t“de and the shape %]:fter simple calculations one can derive equations describ-
the pulse; t_he slow dynamics dgscnbe_s the average changl%sg| the evolution of the parameteadz), b(z), and u(2)
due to nonlinear effects and residual dispersion. We demon- ' k K

strate that this slow average dynamics leads asymptoticall see, €.0.(36,37),
to the formation of stable breathing structures predicted in a2b= const= N2 @)
[19]. ’

In what follows we adopt the variational approach and X 27y d(2) )

derive by means of this method a simple model describing , , (9)
both rapid oscillations and the average pulse evolution under Zis

the combined effects of nonlinearity and residual dispersion.

Equation(1) can be rewritten after a trivial transformation 2Zyd(z) , Zwd(2)C; c(2N*C, 10

(A=Q(t,2)exd [5G(Z')dZ]) in the Lagrangian form Mot Zgs T 2Z4b? b3
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- - 3C,Zyd(z)~ c(2)N?C,
4@y, = g b g2
I

Here and in what follows we drog: to avoid complex no-
tation. The initial conditions for Eq(13) at z=0 areb=0
andv=0. The solution of Eq(13) with these conditions is

found as
"' ~ 2Z\ d_N2C,B, (zdy [vc(x)B
5o _ 2N 2zJ _BZ’J Brax, (14
Zis 0ByJo B
05
0 . AV . by=rB,+rB,| =2
10 5 0 5 10 Zc By
2
FIG. 2. Localized solutions of Eq18) in different limiting _ 2Zn 44N CZBZJZd_g YC(X)ZBXdX. (15)
cases. Herer;=\=0.5, a,=1, anda;,C;— a,C,=a. Solid line, Zis zByJz, B
solution witha=0.1; pulse in the middlea=1; and upper solution,
a=>50. The coefficientsr; andr, are determined by matching

these solutions at=z.. The resulting change of the pulse
Here Cy=/"7|f,|2dx/f " “x?|f|2dx and C,=/*Z|f|*dx/ width due to nonlinearity over one period in the main order

47 **x2|f|2dx. For instance, for the soliton pulsg(x) 'S 9'Ve€N by

=sechk),C,;=2C,=4/7?, and for the Gaussian shape _ 2N2C, 7y, 2c(2)z
f(x)=exp(=x?), C;=4 andC,=1/,/2. These equations de- b,(zy)= Z d_f —dz

scribe the evolution of the pulse parameters under the com- dis o BZ

bined action of fast variations of the dispersion and amplifi- 2.¢(2) (24— 2)

cation and the slow dynamics due to nonlinearity and - +f —_—a (16)
residual dispersion. Z B

Introducingy= wb, we can obtain from Eqs9) and(10) In the case we consider hete <0, d, >0, and, respec-

tively, b, (z,)<0. One can see that under certain conditions
the compression of a puldd . (z,)<0] due to nonlinear
effects can balance dispersive broadening of a pulse due to
residual dispersiont.s>0) even on the one period. A more
. . _— . general situation, however, is when this delicate balance be-
To describe propagation of the initial pulse in the formyeen nonlinear effects and residual dispersion leads to the
A(0t)=Nexp(-t") we fix as initial conditions to EQS9)  |ong.wavelength oscillations that will be described in Sec.
and (11) b|,—o=1, dv/dZ,—,=0, C;=4, andC,=1/2. |
The solution of these equations in the I|2near chsithout The above description is valid for any localized structural
the last term in Eq(11)] has the formb{=1+16R*(2),  function f used in Eq.(5). Now we address the problem of
whereR(z) has been defined above. the shape of a breathing soliton. As it has been discovered in
In the limit Z,,Z4¢<Zy,, one may again treat the non- [23], the profile of the asymptotic pulse is very close to the
linearity as a perturbation. At the lowest order, fast oscilla-Gaussian shape. This corresponds to the quasilinear solution
tions of the pulse amplitude and width are given by the sogiven by Eq.(3), as mentioned above. On the other hand, as

~Znd(2)Cy c(2)N?C,
VeT 27 4b° bz -

(11)

lution of the linear problem was found in[19] in some particular limits, a breathing soli-
ton is described again by the NLS equation and the
d2B. ZﬁLd%(Z)Cl asymptotic pulse profile is close to sech. Now we use the

(12) same variational principle to analyze the general features of
the functionf. Assume that the asymptotic pulse presents an
oscillating quasisoliton. More concretely, we suppose that

The soluton of this equaton has the form the shape of the pulse is reproduced after passing the com-

B2 =1+4C,R%(2), with dR. /dz=Z,, d./2Zy4.. This so- Pensating cell. This assumption is based on the results of

lution describes rapid oscillations due to the variation of dis-"umerical simulations of23,22 and numerical results pre-

persion and a slow broadening due to residual dispersion. fented below. In terms of the developed variational approach
follows from here, in particular, that a small changelof this means that there are periodic solutifz) andu(2z) of

over a period due to residual dispersion is given byEqs.(Q) and (10). Using the results obtained above and this
brec=|(d(2)) VC1Za/Zgd =0 assumption, let us choose a trial function in the form
res a isl = Y-

dzz - ZgisBst

To obtain the equation governing small change$ ()

: . X . N
due to nonlinearity we linearize Eq&) and(11) about the Q(z,t)= ——f[t/b(z)Jexdirz+iu(z)t?] (17)
linear solutionB.. , assumingp=B. +b. andb.<B., " Jb(2) il K ’
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whereb(z) and u(z) are periodic solutions of Eq$9) and  earity and residual dispersion. To describe fast pulse width
(10) with some arbitraryC, and C, [we start here from oscillations let us make the Fourier transformation
arbitrary C;,C, and find the correspondinf(s)]. Because Q(z,t)=(1/y/27)/dwQ, exp(-iwt). The actionS is trans-
any solution of Eq.(1) must realize the extremum of the formed to

action S, we can consider now the variational problem
8S=0 as a way to determine general features of the struc-

tural functionf. Averaging the Lagrangian over a period in s:f L dtdz:f dz dw IE(Q(UQ:)Z_ Q*Q.2)
z yields, after simple calculations, the equation of the shape
of the asymptotic pulsé(s), ZnL
+ d(2) 0% Q,|?
2 2Z4is

f
P 2f _\f— — 2f —

a1d32+a2|f| f—\f (C(]_Cl 012C2)S f 0, (18) C(Z) i .
- Hf dwldeQwalezle+w2*w . (19)
where a;=2y/2Z4£d(2)/b?), a,=N?*c(z)/b), and the
angular brackets denote averaging over one periad The i , i
pulse shape in two important limits can be found from Eq. /AS Was mentioned above, in the lim}, ,Zq<Zy, , one

(18). In the quasilinear case,— 0, the solution is evidently M&Y treat the nonlinearity as a perturbation. In the lowest
close to the pure Gaussian shape. What; = ,C,, the order, fast oscillations of the pulse width are given by Eq.
pulse profile is close to the fundamental soliton of the NLS(Z)' T_he fast process corresponds to the osciIIaFior?s of th_e
equation(NLSE). In the general case the localized solution @MPlitude and the shape of the pulse due to periodic ampli-

presents some intermediate state between the fundamen{g“lation and dispersion compensation and the slow evolution
soliton and the Gaussian shape. Solutions of @) for

Is due the average changes due to nonlinear effects and re-
different limiting cases are shown in Fig. 2. To illustrate Sidual dispersion. Therefore, we assume tgj varies
different cases, we seta;=A=0.5, a,=1, and

slowly with z and presenQ(t,z) in the form

a1C;— ay,Cy=a. The solution witha=0.1 (close to the
NLSE soliton is shown by the solid line, the pulse in the +o ) -
middle corresponds ta=1, and the narrow upper solution Q(tz)= fﬁx do¥(w,z)exdiot—i0R(2)]. (20
is for a=50. For not smalla the solution can be approxi-
mated with good accuracy by the Gaussian distribution. A
general feature of the structural functiéris that it has the Here dR/dz=(Zy /2Z49d(z). Note that in the limit
Gaussian wings in the typical case. The Gaussian-like shap@iis<Za<Zy. from Eq. (20) a general structure of the
of the pulse results from the effective parabolic potential thagsymptotic form of a breathing pulse can be obtained. In-
occurs due to the pulse chirping.{>0). Another conclu- deed, in this limiR~Z,/Z4s>1 and the integral20) can be
sion from Eq.(18) is that a localized asymptotic pulse can be @pproximated using the method of stationary phase. This
formed in the case of the anomalous path average dispersioyields (omitting insignificant multipliers
Thus this simple qualitative approach explains some obser-
vations of[23]. More details on the comparison of this solu- z +oo
tion with numerical simulations of23] will be discussed A(Z,I)ZEXF{f G(z’)dz’f do¥,(2)
elsewhere. 0 o

Equationq9) and(11) give an approximate description of
the breathing dynamics of optical pulses in cascaded optical xexyi wt—isz(Z)])
systems with dispersion compensation. As was shown in
[38], the variational approach in the nondissipative NLSE is z
not applicable to the description of the quantitative interac- exp( f G(z’)dz’) ’
tion of the soliton with radiation. Therefore, one should be _ 0 ( t )exp( —ij t_)
very careful in making quantitative conclusions about the JR(2) 2R(z) 4R(2)
soliton interaction with radiation from the method developed 21)
above. It should be combined with direct numerical simula-
tions. We note that for distances of tens amplifications peri-
ods (this case is of importance for European fiber links, forNote that this asymptotic form of the breathing soliton has
instance, this approximate description of the pulse evolutiontheé same structure as the solution of the linear prol®nm
is in good agreement with the results of numerical simulathe case of larg®k. The difference is that the shape of the
tions[22]. As will be shown below, however, the variational soliton or the structural function is determined by the
approach with the simple trial function in the forf) does interplay between residual dispersion and nonlinearity.
not always keep the important features of the solution of Eq. To obtain the equation for the slow average evolution of
(1) that appear on large scales. Q(t,z) we substitute Eqg(20) into the Lagrangian and aver-
agelL over the intervalZ,. Because the functio¥ (w,z) is
assumed to vary slowly on the amplification distance, it can
be placed outside the averaging integral. After straightfor-

In this section we present the averaged equations descrilwvard calculations we obtain the Lagrangian describing the
ing, in the main order, a slow pulse evolution due to nonlin-evolution of the slowly varying envelope.

IIl. AVERAGED DYNAMICS
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z z

FIG. 3. Comparison of the variational approach and direct nu- FIG. 4. Same as in F'_g- 3, but for the p_ulse ch{fFWHM_)
merical simulations. Dashed line, oscillations of tA¢ obtained by ~ 1(2)- Dashed line, oscillations of thé(z) obtained by the varia-
means of the variational approach; solid line, direct simulations ofional approach; solid line, direct simulations of Ed).

Eq. (1). The input pulse is of the form A(t,0)
=exp(—t%4), (d)=0.05.

AN f
H= d(z 0’|V, |?dw
2Ly [ ol

- i
S,= | Ldtdz= | dzdw| [V (w)P2 e
av f z f z 2[ (w) z (w) - f, dwldwzdwgdw45(w1+ Wy~ W3 (1)4)
* Zn 2 2 *
—V*(0)¥V(w)]+ Tdisd(z)w v XF(wl,wz,w3,w4)‘I’wl\I’w2‘I’w3. (26)
_f dz do,dw,dwsdw, ¥, ¥, ¥* U* Of course, the HamiltonianH is real because
“17 027 @3 @ F*(g)=F(—g). For instance, for the case of lossless fiber

(22) (y=0) and equal lengths of DCF and SMF pieces

X o1t wo~ w3 0y F (w1, 02,03, 04), (d_=-d.), it can be found that
- +/

where the functiorF is given by Floy, 0,03, 0)=expi®)sin(®)/4nd

Fo 1 1—exd —2yZ,(1+igd_)] where
4wz, 2y(1+igd_)
, i~ 2yZe~12y9d, (Zo~ Z)] - exp(~27Za) D= (wi+ 05~ 03— 0?)Z,d, /82
2y(1+igd,) '

(23 TR

Hereg=(w3+ w5— ws— w3)/4yZqs. Thus the equation de-
scribing the slow evolution o¥ (w,z) reads

ia\lfw(z) A
0z @ szis

<d(Z)>‘I’w(Z) + ZJj:deldwzdwg,

1Al

X 5((1)1"' Wy~ wW— O)S)F((I)l,(,!)2,(!)3,(1))\1}&)1\1,&)2\1}23.

(24

Equation(24) can be written in the Hamiltonian form

0.9

0 2‘0 4‘0 6‘0 8I0 1 (IJO 1 éO 1 4‘10 160
v ,(2) 6H
= : (25 FIG. 5. Comparison of the direct simulations and variational
0z (S\I’w* . . . .
description in the long-term pulse evolution. The pulse amplitude at
the amplifiers g,=z,k=0.1k with k=1,2,...) is plotted with the
with the Hamiltonian same initial conditions as in Figs. 3 and 4.




3630 GABITOV, SHAPIRO, AND TURITSYN 55
1.2 T T T T T T T 18
/\/\/\W 1.6 i
1 b
1.4 4
0.8
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° . . \ | . ) . 04 L . . . L L . L L
0 20 40 60 80 100 120 140 160 0 5 10 15 20 25 30 35 40 45 50

z z

FIG. 6. Long-term evolution of the envelope of the pulse am- FIG. 8. Variations of the pulse amplitude maxima and minima.
plitude over many amplification periods. The envelope is shown af he input signal is the same as in Figs. 6 and 7. The upper line is
points of the amplifiers location. The initial conditions are for the maximum of the pulse amplitude on the amplification period
A(0t)=N/cosht), N?=2yZ,/[1—exp(-2yZ,)], and(d)=0.05. and the lower line corresponds to the minimum of the pulse ampli-

tude in the span between two amplifiers.

The integralP=[|¥ |?dw is an additional conserved

quantity.  The avgraged_ soliton of the form Eq. (1) and a truncated variational model given by E¢®.

W (z,0)=Vo(w)exp(r-2) realizes the extremum of thd  and (11). The parameters used in the calculations are

for a fixed P, ZnL =360 km andZ,= Z 4= 36 km; which correspond to the
S(H+\2P)=0. @7 input pulse power of the order of several megawatts and

to~27 ps. The dimensionless residual dispergidhused in
Again it can be shown that localized solutions exist only inthe simulations varies from 0.05 to 0.1. The characteristic

the case of the anomalous path average dispersion, i.e., po -”ch , . of ) ] the

tive (d(z)). Note that the dynamics of the localized averagereSidual dispersion corresponding ¢d)=0.1 is Zgp=360
pulse depends on the dispersion map. The typical solutiofM- Other parameters aree=0.25 dB/km(y=0.11%);
presents a central peak interacting with radiation. Radiatiothe length of the DCF pieceZ.=6 km; D_=—80

can be suppressed by special dispersion mag@8p Equa- PS/nmkm, and, =18 ps/nmkm. _

tion (24) describes the slow averaged evolution of the pulse First, we demonstrate that the variational approach in the
due to the combined action of nonlinearity and residual disform presented above gives a reasonable approximation of
persion. Results of the numerical simulations demonstra\tingWe optical pulse dynamics in the system under consideration,

such an averaged dynamics will be presented in the followPut only on relatively short distances. Figures 3 and 4 show
ing section. the pulse evolution obtained by direct numerical simulations

of Eq. (1) (solid line and by means of the variational ap-

proach(dashed ling The spatial evolution of the envelopes

[|A(0,2)|] is presented in Fig. 3, while Fig. 4 shows the
Here we discuss the results of comparative and

asymptotic numerical analyses of a general model given by

IV. ASYMPTOTIC PULSE FORMATION

25| . B

|
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FIG. 7. Same as in Fig. 6, but for the pulse width.
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FIG. 9. Averaged dynamics as in Fig. 8, but for the Gaussian
input pulseA(0,t) =1.52 exp(t?), (d)=0.05.
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(a)

0.025 T T ' T T ' ' T ' FIG. 11. Evolution of the pulse energy defined as
Pmain= /> 5|A|2dt. The initial conditions are the same as in Fig. 10.
002 | P main VErsusz is plotted.
evolves into a new state that manifests itself as a breathing
solitary wave. The speed and features of this transition de-
pend on the residual dispersion value, input pulse param-
eters, and its shape. Figures 6—8 demonstrate the oscillating
structure that emerges from the initial pulse
A(0,t)=N/cosh(t). In Figs. 6 and 7 the pulse amplitude and
: width, respectively, at the amplifiers are shown. Note that the
0005 e & amplification distancez,=0.1 in the dimensionless vari-
- ables; therefore, this figure can be considered as an average
R ‘ . description of the pulse dynamics. The fast breathing dynam-
200 80 g0 40 20 00 80 60 0 20 0 ics is accompanied by slow average oscillations due to non-
linearity and residual dispersion. In the asymptotic state the
FIG. 10. Structure of the asymptotic stata). The shapes of the amplitude of these oscillations is smaller than during the
pulse are plotted for=25 (solid line) andz= 150 (dashed curye transition period. However, we did not find in our numerical
The initial pulseA(t,0)=exp(—t%4). (b) A closeup view of the tail  simulations a state for which such slow oscillations are ab-
dynamics. sent. Figures 8 and 9 illustrate how the asymptotic state can
depend on the input pulse shape. In these figures the upper
spatial dependence of the pulse width. The agreement of tHe is for the maximum of the pulse amplitude on the am-
direct simulations with the variational approach is very goodplification period and the lower line corresponds to the aver-
up to the distance~1, which corresponds to the propaga- aged minimum of the pulse amplitude. Figure 9 shows that
tion distance of about 360 km. In Figs. 3 and 4 the fastfor the initial Gaussian pulse, on average, oscillations are
dynamics of the pulse is shown. Small changes over onemaller and have a larger period in comparison to the sech
period lead to the slow evolution of the pulse parameters. Tinput pulse(Fig. 8). It should be pointed out that quasistable
describe the slow evolution, we will use the following pulse propagation is possible if a residual dispersion coefficient
characteristics: the maximum and minimum of the pulse amb ¢ is positive (anomalous dispersion regiprOnly in this
plitude and width on the amplification period and the pulsecase is the propagation of breathing bright soliton possible,
width and amplitude at the amplifierlocated at even in the presence of DCF pieces with high normal disper-
z=2z,k, with k=1,2,3,...). The long-term (averageyl sion. If the residual dispersion is negative, dark solitons can
pulse evolution is shown in Fig. 5. In Fig. 5 the pulse am-propagate in such a system. We use here the term breathing
plitude at the amplifiers found by means of the variationalsoliton, though the shape of the final state is not sech, as for
approachdashed lingand by means of direct simulations of guiding-center solitons. As was shown[28], an asymptotic
Eg. (1) (solid line) is plotted. As follows from Fig. 5, at pulse forming after many amplification periods is closer to
larger distances the results of the simulations diverge considhe Gaussian profile rather than to sech.
erably and truncated variational model with the trial function ~The asymptotic state that is formed with a pulse propaga-
in the form (5), which keeps the main rough features of thetion along the system is not stationary even in the averaged
dynamics, is not valid for the quantitative description of thedescription. The pulse structure, as can be clearly seen from
pulse propagation. Fig. 10@), consists of the main peak interacting with tail of
Due to the quasilinear character of the rapid oscillationsgontinuous radiation. The shapes of the pulse are presented
the general features of the dynamics do not depend signifior the different values at= 25 andz=150. The simulations
cantly on the particular shape of the input signal. On théhave been performed for the initial pulse
scale of many amplification distances, the input pulseA(t,0)=exp(—t%4). Integration has been performed from

0.015

1Al

0.01 -

(b}
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FIG. 12. Same as in Fig. 11, but for the tail energy defined as FIG. 13. Evolution of the tail amplitude. The function
Pui=J2%dAl2dt. Py versusz is plotted. |A(302)] is plotted as a function of.

—200 to 200 in t to avoid the influence of the boundary V. CONCLUSIONS

effects on the tail evolution. The central part of the peak is ) . .

close to a Gaussian distribution in accordance with the re- In conclusion, we have studied numerically and by means
sults of[23]. Figure 1@b) presents a closeup view of the tail Of the variational approach an asymptotic breathing optical
dynamics. This figure demonstrates that the pulse propagaulse propagating through cascaded transmission systems
ing down the fiber link emits radiation that spreads due towith periodic amplification and dispersion compensation. We
dispersion. Figures 11 and 12 show the evolution of the pulsbave derived approximate equations describing the pulse am-
and the tail energies, respectively. In many ways theplitude and width oscillations and found that results obtained
asymptotic pulse dynamics of our model is similar toby this approach are in good agreement with the results of
asymptotic solutions of the NLS equation studied[88]. direct numerical modeling on the short and middle distances.
This dynamics has two basic stages, namely, the “fast’This approximate variational approach explains two impor-
separation of radiative part from the initial pulse and thetant observations of the numerical wok3]: the Gaussian
“slow” interaction of continuous radiation with the main Shape of the asymptotic pu|se and the formation of a quasi-
pulse. In our particular case the process of radiative tail sepastaple pulse only in the case of anomalous path average dis-
ration is Completed at the distanze-20 (See FlgS 12 and persion_ We have found that an input pu|se evolves asymp-
13) for the chosen initial field distribution. The amount of totically into a stable breathing structure. After the first stage
energy of continuous radiation is less than 1% of the energyt propagation, the input pulse emits radiation that spreads
of the main pulse. The further interaction of continuous ra'due to dispersion_ The asymptotic structure that is formed
diation with the main pulse has the character of decreasingealizes a balance between the main pulse and the radiative
oscillations. The corresponding energies of the radiative tailajl. The results of our numerical simulations confirm the

and the main pulse are approaching their constant valuepossibility of “breathing” pulse transmission.
This behavior is in good qualitative agreement with the pulse

dynamics in the integrable NLS equation described38l.
The period of oscillations is approximately equal to 26t ACKNOWLEDGMENTS
dispersion length in our case is equal t0)0.1
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