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Asymptotic breathing pulse in optical transmission systems with dispersion compensation
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We study a nonlinear process of the formation of a breathing solitary wave in the optical transmission
systems with periodic amplification and dispersion compensation. Results of our numerical simulations dem-
onstrate remarkably stable asymptotic propagation of such breathing pulse over long distances. We have
derived approximate equations describing pulse amplitude and width oscillations and found that results ob-
tained by this approach are in good agreement with the results of direct numerical modeling on the short and
middle distances. It is shown that asymptotic averaged pulses have a form typically close to a Gaussian shape.
We have found numerically that an input pulse evolves asymptotically into a stable breathing structure. After
the first stage of propagation, the input pulse emits radiation that spreads due to dispersion. The asymptotic
structure that is formed realizes a balance between the main pulse and the radiative tail.
@S1063-651X~97!10203-3#

PACS number~s!: 03.40.Kf, 42.65.Tg, 42.81.Dp
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I. INTRODUCTION

One of the most important applications of the solit
theory is fiber optical communications. In order to satisfy t
demands of future information transmission, which grows
an exponential rate, it is necessary to develop ultrafast o
cal transmission lines whose data transmission rates sh
eventually operate in a few hundred gigabits per second
gime. The possibility of achieving such a goal was dem
strated in recent experiments@1–5#. Optical solitons are the
real candidates to play the role of the carriers of informat
in such systems. Nonlinear models governing optical soli
transmission in fiber links are both of evident importance
applications and of a fundamental physical interest.

The problem of high-capacity system design falls into t
categories: long-haul transmission systems based on low
persion fibers~the zero dispersion point lies in the 1.55-mm
window of optical transparency! and upgrading the existing
fiber links based on standard telecommunication fib
~STFs!. Recent progress in the fabrication of the erbiu
doped fiber optical amplifiers operating at 1.55mm and low
dispersion fibers has already demonstrated the effective
of long-distance soliton-based optical communication s
tems~see, e.g.,@2,6–8#!. Lightwave transmission systems e
ploiting periodically distributed in-line optical amplifiers t
compensate for a carrier pulse attenuation in the fiber
soon be installed as transoceanic communication links.
main feature of such a system is that amplifier spacing
considerably shorter than the characteristic dispersion le
and therefore both the dispersion and nonlinearity can
treated as perturbations on the scale of the distance betw
amplifiers. Only the fiber losses and periodic amplificati
are significant factors in the leading order. These fact
cause the amplitude oscillations, while the form of the pu
551063-651X/97/55~3!/3624~10!/$10.00
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remains approximately unchanged. On a large scale p
propagation in such communication systems is described
the well-established guiding-center~average! soliton theory
@9,6,10#. The problem of upgrading the existing optical link
which are based on the standard telecommunication fi
arise due to high~approximately 17 ps/nm km! dispersion in
the 1.55-mm window of optical transparency. The optic
amplifiers are usually placed at intervals of a few tens
kilometers for conventional transmission systems. T
higher capacity of the transmission system requires sho
pulses. Therefore, the destructive influence of dispers
takes place at shorter distances. For multigigabit transm
sion at 1.55mm the corresponding dispersion length in ST
is approximately equal to the amplification distance in t
installed networks@11,12# and guiding-center soliton theor
cannot be applied.

The influence of chromatic dispersion can be significan
reduced and the transmission capacity can be significa
enhanced by means of the dispersion compensation t
nique. The simplest optical-pulse equalizing system cons
of a transmission fiber and a compensating fiber with
opposite dispersion@14#. The incorporation of a piece of fi
ber with high normal dispersion reduces the total dispers
of the fiber span between two amplifiers. Recent progres
the chirped fiber grating@13# allows dispersion of 500 ps/nm
or even more to be compensated by a grating fiber a
decimeters in length. Presently the dispersion compensa
is a simple and effective technique with many attractive f
tures such as compatibility with the present concept of
all-optical transparency of the system, cascadability, a
availability of all system components. The effectiveness
this method was demonstrated in several experiments@15–
18# both for point-to-point and for cascaded transmiss
systems.
3624 © 1997 The American Physical Society
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55 3625ASYMPTOTIC BREATHING PULSE IN OPTICAL . . .
The soliton transmission using dispersion compensa
fibers ~DCFs! has recently become the focus of intensi
research@19–30#. Large variations of the dispersion lead
the oscillations of a pulse width on the amplification d
tance. It was discovered in@23# that the resulting asymptoti
pulse is close to the Gaussian shape and has energy
above that of the soliton of the average dispersion. Pu
dynamics in the nonlinear Schro¨dinger ~NLS! equation with
the dispersion varying asd(z)511e sin(kz) has been stud
ied in @33,34# by means of the variational approach and n
merically. It has been shown in@34# that while a very broad
soliton is stable in such a model, the splitting of the fund
mental soliton takes place if the modulation length is of
order of the dispersion length and the modulation amplitu
exceeds a certain critical value. The dispersion-alloca
soliton transmission line using dispersion-shifted nonsoli
fibers was suggested recently in@26#. In @28,21# the varia-
tional approach was used for the analysis of a pulse dyn
ics in optical communication systems with dispersion co
pensation. Modulation instability in the dispersion-manag
optical lines was studied in@24–32#. Numerical simulations
of the soliton transmission in short standard monomode fi
~SMF! systems upgraded by dispersion compensation h
been performed in@12#. It has been shown that 10-Gbit
transmission over 200 km is possible with a 36-km amplifi
spacing. A theory of the average pulse propagation in s
tems using DCFs has been presented in@19#. It has been
suggested to use breathing solitons for optical data trans
sion in STFs at 1.55mm.

In this paper we study numerically and by means of
variational approach the asymptotic dynamics of the opt
pulse in the transmission systems using the dispersion c
pensation technique. We have found that an asymptotic
input signal evolves into the breathing soliton predicted
@19#. We derive an effective approximate model for pul
evolution by assuming that nonlinear effects and resid
dispersion are responsible for ‘‘slow’’ average dynamics.

II. BASIC EQUATIONS AND VARIATIONAL APPROACH

The propagation of optical pulses in a transmission s
tem with periodic amplification and dispersion compensat
is governed by the~dimensionless! NLS equation

iAz1
ZNL
2Zdis

d~z!Att1uAu2A

5 iZNLS 2g1@exp~gZa!21#(
k51

N

d~z2zk!DA
5 iG~z!A. ~1!

We use here the notation of@19#: ZNL51/sP0 is the nonlin-
ear length,Zdis5t0

2/ub2u is the dispersion length correspon
ing to the STF~there are, as a matter of fact, three differe
dispersion lengths!, t0 and P0 are the incident pulse width
and peak power,b2 is the group velocity dispersion for th
STF,s is the coefficient of the nonlinearity,g describes fiber
losses,Za is amplification period, andzk5kza are the ampli-
fiers locations. Retarded time is normalized to the init
pulse width t5T/t0, an envelope of the electric fiel
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E5E(T,Z) is normalized to the initial pulse powe
uEu25P0uAu2, and the coordinate along the fiberz is normal-
ized to the nonlinear lengthz5Z/ZNL . Chromatic dispersion
d(z) is normalized here to the STF dispersion coefficient

We consider without loss of generality the followin
dispersion-compensating scheme. A transmission line
sents periodic alternating DCFs, transmission fiber sectio
and in-line optical amplifiers as shown in Fig. 1. Each s
tion includes a dispersion-compensated fiber with norm
dispersionD2 , lengthZc , and segments of transmission fi
ber with anomalous dispersionD1 and lengthZ5Za2Zc .
The average ~residual! dispersion of the section is
D res5@D2Zc1D1(Za2Zc)#/Za . To provide the average
soliton propagation the residual dispersionD resmust be posi-
tive @19,12,26#. There are three characteristic dispersi
scales in the system under consideration: a dispersion le
ZDCF, corresponding to the chromatic dispersion of the DC
a dispersion length of the transmission fiberZdis; and a dis-
persion length that corresponds to the residual dispersio
each sectionZRD. An optical pulse propagating in such
system experiences periodic oscillations of the amplitude
width. A pulse evolution in the transmission line in the fir
approximation can be described as a quasilinear proces
the first stage, pulses acquire a positive dispersion-indu
frequency chirp induced by a DCF. The pulse width i
creases in this stage due to dispersive broadening. Enter
piece of a STF pulses compress because the sign of the
persion is reversed and the condition for dispersion-indu
compressionb2C,0 is satisfied~see, e.g.,@35#!. During
propagation in fibers the amplitude of the pulse is redu
due to fiber losses. Therefore, pulses must be regenerat
the end of each section. In cascaded systems such a
section including a DCF, a STF, and an optical amplifier
periodically repeated. When nonlinear effects and resid
dispersion are negligible the pulse recovers its original fo
Indeed, a phase shift of the pulse corresponding to the K
effect over one cycle of this process is small; therefo

FIG. 1. Schematic diagram of the dispersion compensation. D
persion compensating fibers are followed by pieces of transmis
fibers. Dispersiond(z) is normalized to the STF dispersion.
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3626 55GABITOV, SHAPIRO, AND TURITSYN
dispersion and fiber losses are the main acting factors. H
ever, these small changes are collected and at larger
tances the Kerr nonlinearity may begin to come into pl
The influence of residual dispersion appears at a distanc
ZRD@Za and alters the shapes of pulses. The nonlin
lengthZNL can be comparable withZRD. Therefore, in the
description of a ‘‘slow’’ evolution of the pulse, it is neces
sary to take into account both the residual dispersion
nonlinearity. Thus rapid breathing oscillations of the pu
are accompanied by slow average changes of the pulse
acteristics due to nonlinearity and residual dispersion@19#.

In the limit Za ,Zdis!ZNL , one may treat the nonlinearit
as a perturbation. In the lowest order, fast oscillations of
linear pulse amplitude and width are given by

A~z,t !5E
2`

1`

dvAvexpS ivt2 iv2
ZNL
2Zdis

E
0

z

d~j!dj D .
~2!

HereAv does not depend onz and is determined by initia
pulse form. For a Gaussian input signalA(0,t)5Nexp(2t2)
linear oscillations are described by

A~z,t !5
N

At~z!
exp@2t2/t2~z!2 iCt2/t2~z!1 iF~z!#,

~3!

where t2(z)51116R2(z),dR(z)/dz5d(z)ZNL /(2Zdis),
C54R(z), andF520.5arctan@4R(z)#. The form of linear
solution described above gives hints to the explanation of
Gaussian shape of the asymptotic soliton observed in@23#.
Pulse chirping creates an effective parabolic potential tha
responsible for the formation of the Gaussian wings in b
the linear and nonlinear problems. Nonlinear effects co
into play on a large scale compared toZa , namely, on the
distances proportional toZNL . Therefore, we use the solutio
of the linear problem presented above as the starting p
for consideration of the nonlinear problem. Recall that
guiding-center soliton concept introduced in@9,6# corre-
sponds to the limitZa!ZNL;Zdis. We analyze in this work
a regime withZNL@Za;Zdis @19#. The existence of the sma
parametersZdis/ZRD andZa /ZNL allows us to introduce fas
and slow scales of the evolution@19#. The fast process cor
responds to the oscillations of the amplitude and the shap
the pulse; the slow dynamics describes the average cha
due to nonlinear effects and residual dispersion. We dem
strate that this slow average dynamics leads asymptotic
to the formation of stable breathing structures predicted
@19#.

In what follows we adopt the variational approach a
derive by means of this method a simple model describ
both rapid oscillations and the average pulse evolution un
the combined effects of nonlinearity and residual dispers
Equation~1! can be rewritten after a trivial transformatio
„A5Q(t,z)exp@*0

zG(z8)dz8#… in the Lagrangian form
w-
is-
.
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S5E L dt dz5E dt dzF i2 ~QQz*2Q*Qz!

1
ZNL
2Zdis

d~z!uQtu22
c~z!

2
uQu4G . ~4!

Here c(z)[exp@2*0
zG(z8)dz8# can be presented as

sum of rapidly varying and constant partsc(z)5^c(z)&
1 c̃(z), where ^c̃(z)&50 and ^c(z)&5^exp@2*0

zG(z8)dz8#&
5@12exp(22gza)#/2gza . We write alsod(z) in the similar
form d(z)5^d(z)&1d̃(z), where ^d̃(z)&50 and ^d&
5@d2zc1d1(za2zc)#/za is a small perturbation due to a
average residual dispersion (^d&'Zdis/ZRD!1). Here we
use the notation̂f &5(1/za)*0

zaf (z)dz.
Any solution of Eq.~1! corresponds to an extremum o

S. Therefore, to obtain an approximate model describing
pulse evolution in Eq.~1! one can specify some expecte
general features of a solution in the trial function and obt
a reduced variational problem after integration int @36,37#.
In recent papers@28,21# this approach has been applied to t
problem of optical pulse propagation in systems with disp
sion compensation. The accuracy of this method depend
the successful choice of a trial function and must be verifi
by direct numerical integration.

Because nonlinearity and residual dispersion act as s
perturbations to the linear dynamics, we assume that
asymptotic pulse structure will be close to the one given
Eq. ~3!. Therefore, to describe both rapid pulse width osc
lations and slow dynamics due to nonlinearity and resid
dispersion let us choose a trial function in the form

Q~z,t !5a~z! f @ t/b~z!#exp@ il~z!1 im~z!t2#. ~5!

Inserting the trial function given by Eq.~5! into Eq. ~4!, we
obtain the reduced variational problem with

^S&5E ^L&dz, ~6!

^L&5a2bE u f ~s!u2dslz1a2b3E s2u f ~s!u2dsmz

1
ZNL
2Zdis

d~z!Fa2b21E u f su2ds

14m2a2b3E s2u f ~s!u2dsG2 c~z!

2
a4bE u f ~s!u4ds.

~7!

After simple calculations one can derive equations desc
ing the evolution of the parametersa(z), b(z), andm(z)
~see, e.g.,@36,37#!,

a2b5const5N2, ~8!

bz5
2ZNLd~z!

Zdis
bm, ~9!

mz1
2ZNLd~z!

Zdis
m25

ZNLd~z!C1

2Zdisb
4 2

c~z!N2C2

b3
. ~10!
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55 3627ASYMPTOTIC BREATHING PULSE IN OPTICAL . . .
Here C15*2`
1`u f xu2dx/*2`

1`x2u f u2dx and C25*2`
1`u f u4dx/

4*2`
1`x2u f u2dx. For instance, for the soliton pulsef (x)

5sech(x),C152C254/p2, and for the Gaussian shap
f (x)5exp(2x2), C154 andC251/A2. These equations de
scribe the evolution of the pulse parameters under the co
bined action of fast variations of the dispersion and ampl
cation and the slow dynamics due to nonlinearity a
residual dispersion.

Introducingn5mb, we can obtain from Eqs.~9! and~10!

nz5
ZNLd~z!C1

2Zdisb
3 2

c~z!N2C2

b2
. ~11!

To describe propagation of the initial pulse in the for
A(0,t)5Nexp(2t2) we fix as initial conditions to Eqs.~9!
and ~11! buz5051, dn/dzuz5050, C154, andC251/A2.
The solution of these equations in the linear case@without
the last term in Eq.~11!# has the formbl

251116R2(z),
whereR(z) has been defined above.

In the limit Za ,Zdis!ZNL , one may again treat the non
linearity as a perturbation. At the lowest order, fast oscil
tions of the pulse amplitude and width are given by the s
lution of the linear problem

d2B6

dz2
5
ZNL
2 d6

2 ~z!C1

Zdis
2 B6

3 . ~12!

The solution of this equation has the form
B6
2 5114C1R6

2 (z), with dR6 /dz5ZNLd6/2Zdis. This so-
lution describes rapid oscillations due to the variation of d
persion and a slow broadening due to residual dispersion
follows from here, in particular, that a small change ofb
over a period due to residual dispersion is given
bres5u^d(z)&AC1Za /Zdisu>0.

To obtain the equation governing small changes ofb(z)
due to nonlinearity we linearize Eqs.~9! and ~11! about the
linear solutionB6 , assumingb5B61b̃6 and b̃6!B6 ,

FIG. 2. Localized solutions of Eq.~18! in different limiting
cases. Herea15l50.5, a251, anda1C12a2C25a. Solid line,
solution witha50.1; pulse in the middle,a51; and upper solution,
a550.
-
-
d

-
-

-
It

y

b̃z5
2ZNL
Zdis

d~z!ñ, ñz52
3C1ZNLd~z!

2ZdisB
4 b̃2

c~z!N2C2

B2 .

~13!

Here and in what follows we drop6 to avoid complex no-
tation. The initial conditions for Eq.~13! at z50 are b̃50
and ñ50. The solution of Eq.~13! with these conditions is
found as

b̃252
2ZNLd2N

2C2Bz

Zdis
E
0

z dy

By
2E

0

y c~x!Bx

B2 dx, ~14!

b̃15r 1Bz1r 2BzE
zc

z dy

By
2

2
2ZNLd1N

2C2Bz

Zdis
E
zc

z dy

By
2E

zc

y c~x!Bx

B2 dx. ~15!

The coefficientsr 1 and r 2 are determined by matchin
these solutions atz5zc . The resulting change of the puls
width due to nonlinearity over one period in the main ord
is given by

b̃1~za!5
2N2C2ZNL

Zdis
Fd2E

0

zc c~z!z

B2
3 dz

2d1E
zc

za c~z!~za2z!

B1
3 dzG . ~16!

In the case we consider hered2,0, d1.0, and, respec-
tively, b1(za),0. One can see that under certain conditio
the compression of a pulse@b1(za),0# due to nonlinear
effects can balance dispersive broadening of a pulse du
residual dispersion (bres.0) even on the one period. A mor
general situation, however, is when this delicate balance
tween nonlinear effects and residual dispersion leads to
long-wavelength oscillations that will be described in Se
III.

The above description is valid for any localized structu
function f used in Eq.~5!. Now we address the problem o
the shape of a breathing soliton. As it has been discovere
@23#, the profile of the asymptotic pulse is very close to t
Gaussian shape. This corresponds to the quasilinear solu
given by Eq.~3!, as mentioned above. On the other hand,
was found in@19# in some particular limits, a breathing sol
ton is described again by the NLS equation and
asymptotic pulse profile is close to sech. Now we use
same variational principle to analyze the general feature
the functionf . Assume that the asymptotic pulse presents
oscillating quasisoliton. More concretely, we suppose t
the shape of the pulse is reproduced after passing the c
pensating cell. This assumption is based on the result
numerical simulations of@23,22# and numerical results pre
sented below. In terms of the developed variational appro
this means that there are periodic solutionsb(z) andm(z) of
Eqs.~9! and ~10!. Using the results obtained above and th
assumption, let us choose a trial function in the form

Q~z,t !5
N

Ab~z!
f @ t/b~z!#exp@ ilz1 im~z!t2#, ~17!
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3628 55GABITOV, SHAPIRO, AND TURITSYN
whereb(z) andm(z) are periodic solutions of Eqs.~9! and
~10! with some arbitraryC1 and C2 @we start here from
arbitraryC1 ,C2 and find the correspondingf (s)#. Because
any solution of Eq.~1! must realize the extremum of th
action S, we can consider now the variational proble
dS50 as a way to determine general features of the st
tural function f . Averaging the Lagrangian over a period
z yields, after simple calculations, the equation of the sh
of the asymptotic pulsef (s),

a1

d2f

ds2
1a2u f u2f2l f2~a1C12a2C2!s

2f50, ~18!

where a15ZNL/2Zdiŝ d(z)/b
2&, a25N2^c(z)/b&, and the

angular brackets denote averaging over one period inz. The
pulse shape in two important limits can be found from E
~18!. In the quasilinear casea2→0, the solution is evidently
close to the pure Gaussian shape. Whena1C15a2C2, the
pulse profile is close to the fundamental soliton of the N
equation~NLSE!. In the general case the localized soluti
presents some intermediate state between the fundam
soliton and the Gaussian shape. Solutions of Eq.~18! for
different limiting cases are shown in Fig. 2. To illustra
different cases, we set a15l50.5, a251, and
a1C12a2C25a. The solution witha50.1 ~close to the
NLSE soliton! is shown by the solid line, the pulse in th
middle corresponds toa51, and the narrow upper solutio
is for a550. For not smalla the solution can be approxi
mated with good accuracy by the Gaussian distribution
general feature of the structural functionf is that it has the
Gaussian wings in the typical case. The Gaussian-like sh
of the pulse results from the effective parabolic potential t
occurs due to the pulse chirping (a1.0). Another conclu-
sion from Eq.~18! is that a localized asymptotic pulse can
formed in the case of the anomalous path average disper
Thus this simple qualitative approach explains some ob
vations of@23#. More details on the comparison of this sol
tion with numerical simulations of@23# will be discussed
elsewhere.

Equations~9! and~11! give an approximate description o
the breathing dynamics of optical pulses in cascaded op
systems with dispersion compensation. As was shown
@38#, the variational approach in the nondissipative NLSE
not applicable to the description of the quantitative inter
tion of the soliton with radiation. Therefore, one should
very careful in making quantitative conclusions about
soliton interaction with radiation from the method develop
above. It should be combined with direct numerical simu
tions. We note that for distances of tens amplifications p
ods ~this case is of importance for European fiber links,
instance!, this approximate description of the pulse evoluti
is in good agreement with the results of numerical simu
tions @22#. As will be shown below, however, the variation
approach with the simple trial function in the form~5! does
not always keep the important features of the solution of
~1! that appear on large scales.

III. AVERAGED DYNAMICS

In this section we present the averaged equations des
ing, in the main order, a slow pulse evolution due to nonl
c-
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earity and residual dispersion. To describe fast pulse w
oscillations let us make the Fourier transformati
Q(z,t)5(1/A2p)*dvQvexp(2ivt). The actionS is trans-
formed to

S5E L dt dz5E dz dvF i2 ~QvQvz* 2Qv*Qvz!

1
ZNL
2Zdis

d~z!v2uQvu2

2
c~z!

4p E dv1dv2QvQv1
* Qv2

* Qv11v22vG . ~19!

As was mentioned above, in the limitZa ,Zdis!ZNL , one
may treat the nonlinearity as a perturbation. In the low
order, fast oscillations of the pulse width are given by E
~2!. The fast process corresponds to the oscillations of
amplitude and the shape of the pulse due to periodic am
fication and dispersion compensation and the slow evolu
is due the average changes due to nonlinear effects an
sidual dispersion. Therefore, we assume thatQv varies
slowly with z and presentQ(t,z) in the form

Q~ t,z!5E
2`

1`

dv C~v,z!exp@ ivt2 iv2R~z!#. ~20!

Here dR/dz5(ZNL/2Zdis)d(z). Note that in the limit
Zdis!Za!ZNL from Eq. ~20! a general structure of the
asymptotic form of a breathing pulse can be obtained.
deed, in this limitR;Za /Zdis@1 and the integral~20! can be
approximated using the method of stationary phase. T
yields ~omitting insignificant multipliers!

A~z,t !5expS E
0

z

G~z8!dz8E
2`

1`

dv Cv~z!

3exp@ ivt2 iv2R~z!# D

;

expS E
0

z

G~z8!dz8D
AR~z!

CS t

2R~z! D expS 2 i
t2

4R~z! D .
~21!

Note that this asymptotic form of the breathing soliton h
the same structure as the solution of the linear problem~3! in
the case of largeR. The difference is that the shape of th
soliton or the structural functionC is determined by the
interplay between residual dispersion and nonlinearity.

To obtain the equation for the slow average evolution
Q(t,z) we substitute Eq.~20! into the Lagrangian and aver
ageL over the intervalZa . Because the functionC(v,z) is
assumed to vary slowly on the amplification distance, it c
be placed outside the averaging integral. After straightf
ward calculations we obtain the Lagrangian describing
evolution of the slowly varying envelope.
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Sav5E L̃ dt dz5E dz dvF i2 @C~v!Cz* ~v!

2C* ~v!Cz~v!#1
ZNL
2Zdis

d~z!v2uCvu2G
2E dz dv1dv2dv3dv4Cv1

Cv2
Cv3
* Cv4

*

3d~v11v22v32v4!F~v1 ,v2 ,v3 ,v4!, ~22!

where the functionF is given by

F5
1

4pZa
H 12exp@22gZc~11 igd2!#

2g~11 igd2!

1
exp@22gZc2 i2ggd1~Zc2Za!#2exp~22gZa!

2g~11 igd1! J .
~23!

Hereg5(v1
21v2

22v3
22v4

2)/4gZdis. Thus the equation de-
scribing the slow evolution ofC(v,z) reads

i
]Cv~z!

]z
2v2

ZNL
2Zdis

^d~z!&Cv~z!12E
2`

1`

dv1dv2dv3

3d~v11v22v2v3!F~v1 ,v2 ,v3 ,v!Cv1
Cv2

Cv3
* .

~24!

Equation~24! can be written in the Hamiltonian form

i
]Cv~z!

]z
5

dH

dCv*
, ~25!

with the Hamiltonian

FIG. 3. Comparison of the variational approach and direct n
merical simulations. Dashed line, oscillations of theuAu obtained by
means of the variational approach; solid line, direct simulations
Eq. ~1!. The input pulse is of the form A(t,0)
5exp(2t2/4), ^d&50.05.
H5
ZNL
2Zdis

^d~z!&E v2uCvu2dv

2E
2`

1`

dv1dv2dv3dv4d~v11v22v32v4!

3F~v1 ,v2 ,v3 ,v4!Cv1
Cv2

Cv3
* . ~26!

Of course, the Hamiltonian H is real because
F* (g)5F(2g). For instance, for the case of lossless fibe
(g50) and equal lengths of DCF and SMF piece
(d252d1), it can be found that

F~v1 ,v2 ,v3 ,v!5exp~ iF!sin~F!/4pF,

where

F5~v1
21v2

22v3
22v2!Zad1/8Zdis.

-

f

FIG. 4. Same as in Fig. 3, but for the pulse width~FWHM!
T(z). Dashed line, oscillations of theT(z) obtained by the varia-
tional approach; solid line, direct simulations of Eq.~1!.

FIG. 5. Comparison of the direct simulations and variation
description in the long-term pulse evolution. The pulse amplitude
the amplifiers (zk5zak50.1k with k51,2, . . . ) is plotted with the
same initial conditions as in Figs. 3 and 4.
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The integralP5* uCvu2dv is an additional conserved
quantity. The averaged soliton of the form
C(z,v)5C0(v)exp(il

2z) realizes the extremum of theH
for a fixedP,

d~H1l2P!50. ~27!

Again it can be shown that localized solutions exist only i
the case of the anomalous path average dispersion, i.e., p
tive ^d(z)&. Note that the dynamics of the localized averag
pulse depends on the dispersion map. The typical soluti
presents a central peak interacting with radiation. Radiati
can be suppressed by special dispersion mapping@23#. Equa-
tion ~24! describes the slow averaged evolution of the puls
due to the combined action of nonlinearity and residual di
persion. Results of the numerical simulations demonstrati
such an averaged dynamics will be presented in the follow
ing section.

IV. ASYMPTOTIC PULSE FORMATION

Here we discuss the results of comparative an
asymptotic numerical analyses of a general model given

FIG. 6. Long-term evolution of the envelope of the pulse am
plitude over many amplification periods. The envelope is shown
points of the amplifiers location. The initial conditions are
A(0,t)5N/cosh(t), N252gZa /@12exp(22gZa)#, and^d&50.05.

FIG. 7. Same as in Fig. 6, but for the pulse width.
si-
e
n
n

e
-
g
-
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Eq. ~1! and a truncated variational model given by Eqs.~9!
and ~11!. The parameters used in the calculations a
ZNL5360 km andZa5Zdis536 km; which correspond to the
input pulse power of the order of several megawatts a
t0'27 ps. The dimensionless residual dispersion^d& used in
the simulations varies from 0.05 to 0.1. The characteris
length of the
residual dispersion corresponding to^d&50.1 is ZRD5360
km. Other parameters area50.25 dB/km(g50.115a);
the length of the DCF piece,Zc56 km; D25280
ps/nmkm, andD1518 ps/nmkm.

First, we demonstrate that the variational approach in t
form presented above gives a reasonable approximation
the optical pulse dynamics in the system under considerati
but only on relatively short distances. Figures 3 and 4 sh
the pulse evolution obtained by direct numerical simulatio
of Eq. ~1! ~solid line! and by means of the variational ap
proach~dashed line!. The spatial evolution of the envelope
@ uA(0,z)u# is presented in Fig. 3, while Fig. 4 shows th

-
t

FIG. 8. Variations of the pulse amplitude maxima and minim
The input signal is the same as in Figs. 6 and 7. The upper line
for the maximum of the pulse amplitude on the amplification perio
and the lower line corresponds to the minimum of the pulse amp
tude in the span between two amplifiers.

FIG. 9. Averaged dynamics as in Fig. 8, but for the Gaussi
input pulseA(0,t)51.52 exp(2t2), ^d&50.05.
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spatial dependence of the pulse width. The agreement of
direct simulations with the variational approach is very go
up to the distancez'1, which corresponds to the propaga
tion distance of about 360 km. In Figs. 3 and 4 the fa
dynamics of the pulse is shown. Small changes over o
period lead to the slow evolution of the pulse parameters.
describe the slow evolution, we will use the following puls
characteristics: the maximum and minimum of the pulse a
plitude and width on the amplification period and the pul
width and amplitude at the amplifiers~located at
zk5zak, with k51,2,3,. . . ). The long-term ~averaged!
pulse evolution is shown in Fig. 5. In Fig. 5 the pulse am
plitude at the amplifiers found by means of the variation
approach~dashed line! and by means of direct simulations o
Eq. ~1! ~solid line! is plotted. As follows from Fig. 5, at
larger distances the results of the simulations diverge con
erably and truncated variational model with the trial functio
in the form ~5!, which keeps the main rough features of th
dynamics, is not valid for the quantitative description of th
pulse propagation.

Due to the quasilinear character of the rapid oscillatio
the general features of the dynamics do not depend sign
cantly on the particular shape of the input signal. On t
scale of many amplification distances, the input pu

FIG. 10. Structure of the asymptotic state.~a! The shapes of the
pulse are plotted forz525 ~solid line! andz5150 ~dashed curve!.
The initial pulseA(t,0)5exp(2t2/4). ~b! A closeup view of the tail
dynamics.
he
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evolves into a new state that manifests itself as a breath
solitary wave. The speed and features of this transition d
pend on the residual dispersion value, input pulse para
eters, and its shape. Figures 6–8 demonstrate the oscilla
structure that emerges from the initial puls
A(0,t)5N/cosh(t). In Figs. 6 and 7 the pulse amplitude an
width, respectively, at the amplifiers are shown. Note that t
amplification distanceza50.1 in the dimensionless vari-
ables; therefore, this figure can be considered as an aver
description of the pulse dynamics. The fast breathing dyna
ics is accompanied by slow average oscillations due to no
linearity and residual dispersion. In the asymptotic state t
amplitude of these oscillations is smaller than during th
transition period. However, we did not find in our numerica
simulations a state for which such slow oscillations are a
sent. Figures 8 and 9 illustrate how the asymptotic state c
depend on the input pulse shape. In these figures the up
line is for the maximum of the pulse amplitude on the am
plification period and the lower line corresponds to the ave
aged minimum of the pulse amplitude. Figure 9 shows th
for the initial Gaussian pulse, on average, oscillations a
smaller and have a larger period in comparison to the se
input pulse~Fig. 8!. It should be pointed out that quasistabl
propagation is possible if a residual dispersion coefficie
D res is positive~anomalous dispersion region!. Only in this
case is the propagation of breathing bright soliton possib
even in the presence of DCF pieces with high normal disp
sion. If the residual dispersion is negative, dark solitons c
propagate in such a system. We use here the term breath
soliton, though the shape of the final state is not sech, as
guiding-center solitons. As was shown in@23#, an asymptotic
pulse forming after many amplification periods is closer t
the Gaussian profile rather than to sech.

The asymptotic state that is formed with a pulse propag
tion along the system is not stationary even in the averag
description. The pulse structure, as can be clearly seen fr
Fig. 10~a!, consists of the main peak interacting with tail o
continuous radiation. The shapes of the pulse are presen
for the different values ofz525 andz5150. The simulations
have been performed for the initial pulse
A(t,0)5exp(2t2/4). Integration has been performed from

FIG. 11. Evolution of the pulse energy defined a
Pmain5*25

5 uAu2dt. The initial conditions are the same as in Fig. 10
Pmain versusz is plotted.
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3632 55GABITOV, SHAPIRO, AND TURITSYN
2200 to 200 in t to avoid the influence of the boundar
effects on the tail evolution. The central part of the peak
close to a Gaussian distribution in accordance with the r
sults of@23#. Figure 10~b! presents a closeup view of the tail
dynamics. This figure demonstrates that the pulse propag
ing down the fiber link emits radiation that spreads due
dispersion. Figures 11 and 12 show the evolution of the pul
and the tail energies, respectively. In many ways th
asymptotic pulse dynamics of our model is similar to
asymptotic solutions of the NLS equation studied in@38#.
This dynamics has two basic stages, namely, the ‘‘fas
separation of radiative part from the initial pulse and th
‘‘slow’’ interaction of continuous radiation with the main
pulse. In our particular case the process of radiative tail sep
ration is completed at the distancez'20 ~see Figs. 12 and
13! for the chosen initial field distribution. The amount o
energy of continuous radiation is less than 1% of the ener
of the main pulse. The further interaction of continuous ra
diation with the main pulse has the character of decreasi
oscillations. The corresponding energies of the radiative t
and the main pulse are approaching their constant valu
This behavior is in good qualitative agreement with the puls
dynamics in the integrable NLS equation described in@38#.
The period of oscillations is approximately equal to 25.5~the
dispersion length in our case is equal to 0.1!.

Continuous radiation leads to the bit rate limitation in
fiber optical links. The source of these limitations is the non
local character of the pulse interactions in the bit strea
through continuous radiation. The description of a such a
interaction will be presented in a separate paper.

FIG. 12. Same as in Fig. 11, but for the tail energy defined a
Ptail5*2200

200 uAu2dt. Ptail versusz is plotted.
r-
D.
.
d
a-

,

s
-

at-
o
e
e

’’

a-

y
-
g
il
s.
e

-

n

V. CONCLUSIONS

In conclusion, we have studied numerically and by mean
of the variational approach an asymptotic breathing optic
pulse propagating through cascaded transmission syste
with periodic amplification and dispersion compensation. W
have derived approximate equations describing the pulse a
plitude and width oscillations and found that results obtaine
by this approach are in good agreement with the results
direct numerical modeling on the short and middle distance
This approximate variational approach explains two impo
tant observations of the numerical work@23#: the Gaussian
shape of the asymptotic pulse and the formation of a qua
stable pulse only in the case of anomalous path average d
persion. We have found that an input pulse evolves asym
totically into a stable breathing structure. After the first stag
of propagation, the input pulse emits radiation that sprea
due to dispersion. The asymptotic structure that is forme
realizes a balance between the main pulse and the radiat
tail. The results of our numerical simulations confirm the
possibility of ‘‘breathing’’ pulse transmission.
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s FIG. 13. Evolution of the tail amplitude. The function
uA(30,z)u is plotted as a function ofz.
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